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ABSTRACT:  

 

Hyperspectral imaging under low light level conditions has a potential use in a variety of 

applications including remote sensing and medical diagnostics. For most conventional hyperspectral 

sensors, however, performance is limited by the amount of photons available in the scene. In this 

work we describe the design and characterization of a hyperspectral camera for which sensitivity 

has been improved close to the photon-counting limit using an electron multiplying CCD array as 

light sensing element. The resulting hyperspectral camera is capable of operating in a wide range of 

illumination conditions with SNR values dependant on light intensity. Example results from field 

and laboratory measurements containing hyperspectral data from poorly illuminated scenes are 

given. The limitations of this approach and an interpretation of the data in terms of the photon noise 

associated with the signal are also discussed. 

 

 

1. INTRODUCTION 

 

Hyperspectral
*
 imaging is used for a broad 

range of applications in remote sensing and 

industry. It is also increasingly being used in 

other fields such as chemical research and 

medical diagnostics. Such versatility comes 

from its capability for recording and proces-

sing the spectral signatures of the materials 

being observed. However, this capability is 

highly dependent on the amount of light 

interacting with the material since incoming 

photons are separated into many spectral 

bands. A fundamental limitation arises when 

the number of photons is so low that relevant 

spectral contrasts are obscured by photon 

noise. Furthermore, in most hyperspectral 
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cameras the internal noise sources dominate 

over the signal in low light level conditions. 

There is however a number of applications 

where spectral imaging at such levels is of 

interest, e.g. low-light remote sensing and 

several fluorescence-based techniques ranging 

from standoff chemical imaging to 

fluorescence microscopy (Randeberg, L.L., 

2006; Sinclair, M.B., 2006). 

 

To enable the exploration of a range of 

potential applications, we have designed a 

low-light hyperspectral camera for the visible 

and near-infrared spectral range based on the 

HySpex VNIR-1600 design (NEO, 2009) and 

an electron-multiplying CCD (EMCCD) 

image sensor. Here, we describe the design 

and characterization of the camera and present 

illustrative results from preliminary tests. We 



also illustrate how knowledge of the photon 

noise level can be exploited in image analysis. 

 

 

2. CAMERA DESIGN 

 

2.1 Electron-multiplying CCD 

 

The detector used is an iXon
EM

+ DU-897 

back-illuminated EMCCD from Andor Tech-

nology PLC. It has 512×512 pixels with a 

pixel size of 16 µm, a full well capacity of 

160 000 electrons and a peak quantum 

efficiency above 90%.The main feature of 

EMCCD sensors is the increased sensitivity to 

light by means of electron-multiplication gain 

(EMG). This consists of an additional register 

in the CCD architecture in which the signal 

from the pixels is progressively amplified 

(Denvir, D.J., 2003). Using the adequate 

EMG settings, the readout noise can be 

reduced to a negligible level at the expense of 

a moderate increase in signal noise in the 

multiplication process. The detector used here 

has a specified noise factor of . By cooling 

to 200 K, dark current is essentially suppres-

sed. Thus, with the proper camera settings the 

dominant source is random photon noise even 

near the photon counting limit.  

 

The nominal gain setting of the camera does 

not correspond directly to the EMG factor. To 

calibrate the EMG response, a constant signal 

from a uniform light field was used. The gain 

setting was varied from no gain up to a value 

for which the output signal was close to 

saturation. This process was repeated for two 

light levels in order to overcome the readout 

noise and cover a wider gain range. EMG 

values used throughout the text are the actual 

amount of gain in the multiplication register 

according to our calibration. 

 

2.2 Camera optics 

 

The optical design is a modified HySpex 

VNIR-1600 camera, a pushbroom-scanning 

imaging spectrograph shown schematically in 

Figure 1. The light from the scene is focused 

by an aspheric mirror onto a slit that defines 

the instantaneous FOV. Behind the slit, a 

second aspheric mirror collimates the light 

onto a transmission grating for spectral 

dispersion in a perpendicular plane to the slit. 

An objective lens focuses the light onto a 

two-dimensional CCD detector array. A more 

detailed description can be found in (Norsk, 

2009). With the Andor iXon detector, the 

linear field of view is 13 degrees over 512 

spatial pixels, or 0.45 mrad per pixel. To 

accommodate the enclosure of a cooled 

EMCCD array, the distance from the grating 

to the objective lens has been increased, with  

only a slight sacrifice in image quality.  

 

 
Figure 1. Schematic of the optical layout of 

the HySpex VNIR-1600 hyperspectral 

camera. 

 

The camera software reads out a window of 

100 pixel rows on the EMCCD array 

corresponding to the wavelength range 360 to 

790 nm. The resulting spectral sampling 

interval is 4.3 nm. An order sorting filter 

mask is not fitted in the current version of the 

low-light camera due to a mechanical conflict 

with the EMCCD enclosure. Therefore, some 

spectral crosstalk may occur in the longwave 

part of the spectrum from second-order 

diffraction of light at shorter wavelengths. In 

the fluorescence tests described below, such 

crosstalk was eliminated by a 400 nm long-

pass filter at the entrance aperture of the 

camera. In the remote sensing tests, no filter 

was used, to maximize light throughput. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Night time target classification  

 

The camera was mounted on a rotation stage 

to record ground-to-ground hyperspectral 



images of two open semi-urban areas at night 

during the winter in the outskirts of Oslo, 

Norway. The dominating illumination 

contribution in the images comes  from 

artificial sources (e.g. streetlights), directly 

and scattered by snow and other topographic 

features. The intensity of the overall light 

signal was measured using a luxmeter, 

averaging less than 0.2 lux during the 

recordings. As a comparison, 1.0 lux 

corresponds to the illumination conditions of 

a full moon night (Schubert, E. F., 2006). 

 
Figure 2. Six colored jackets are used as 

targets during the test (a and b). A detail 

from the hyperspectral image highlighting 

the targets with its corresponding color is 

shown in (c). The spectrum from each jacket 

is shown in (d) according to their color. 

The first scene is shown in Figure 2, at a 

distance of about 50 m from the camera. 

Figure 2 a) shows the scene in daylight before 

the actual measurements. Six jackets of 

different colors are used as targets. These are 

placed at different positions in front and 

between the trees as detailed in b). An RGB 

(600, 578 and 544 nm) image of the inset 

based on the hyperspectral image taken at 

night time is shown in Figure 2 c). Photon 

noise is evident as graininess in the image, but 

the system is clearly able to record usable data 

at this low light level. Sample spectra from 

the targets are shown in d). For this image, the 

camera was set at an integration time (IT) of 

500 ms and EMG = 700.   

 

As an illustration of the use of sensor noise 

estimates in image processing, consider the 

results shown in Figure 3. Here a simple 

Mahalanobis Distance classification algorithm 

has been used to try to separate targets, as 

well as the trees, from each other and from the 

snow background. The classifier is trained on 

small regions on each type of object within 

the same image. The classification result is 

shown in Figure 3 a). Generally, the five 

coloured jackets, as well as the trees, are 

separable from each other and from the snow. 

However the  white jacket appears inseparable 

from the snow background.  

 

It is not immediately clear whether the 

problem with the white jacket is due to a 

shortcoming of the simple algorithm used or 

whether it is an inherent limitation in the data. 

However, the photoelectron count gives 

useful insight into the noise level (Skauli, 

2009) and allows us to analyze the 

separability of objects in terms of photon 

noise. The photoelectron count is a random 

variable with a Poissonian distribution, so that 

the variance is equal to the mean. Therefore, a 

good estimate of noise is obtained by 

calculating the number of photons 

corresponding to each DN value, and then 

taking the square root as an estimate of the 

standard deviation. 

 

(a) 

(b) 

(c) 

(d) 



 

 
Figure 3. (a) The signal from the white target 

shows no contrast against the snow after the 

supervised classification algorithm. The plot 

in (b) shows the number of spectral bands in 

which the white target is separable from the 

rest of the image pixels. 

 

A simple way to analyze the separability in 

terms of sensor noise, is to count the number 

of bands in which two spectra differ by more 

than the photon noise. Here we take the mean 

spectrum of the training pixels on the white 

jacket as a reference spectrum against which 

we compare all pixels in the image. For each 

pixel spectrum, we count the number of bands 

where the 1-sigma confidence intervals 

overlap, ie where the difference in 

photoelectron counts is larger than the sum of 

the estimated standard deviations of 

photoelectron count for the test pixel and 

reference spectrum. Thus the test is based on 

knowledge of sensor noise, rather than on 

variances estimated from the image. 

 

The plot on Figure 3 b) shows, for each pixel, 

the number of bands in which the pixel signal 

is spectrally separable from the white target 

sample according to the criterion stated 

above. It is clear that there are generally very 

few spectral bands in which the snow is 

separable from the target. Hence it can be 

concluded that photon noise is a sufficient 

explanation for the inseparability between the 

white jacket and snow. 

 

This elementary analysis is of course a 

simplistic treatment of the data. Nonetheless it 

illustrates the potential usefulness of sensor-

derived noise estimates, as well as of data 

formats that carry information about signal-

dependent noise (Skauli, T. 2009). 

 

3.2 Night scene with large dynamic range  

 

The camera was also tested in a scene with 

high dynamic range, comprising bright light 

sources spatially close to deep-shadow area. 

See Figure 4. Images were recorded with 

multiple exposure times to capture the scene 

dynamics. Here we show results based on two 

images, one with integration time 100 ms and 

EMG=700 and another with integration time 

10 ms and EMG=70. The figure shows the 

RGB (600, 548 and 458 nm) bands from the 

scene at night in the image with the longer 

exposure time. The signal on the sensor 

saturates  close to the street lights in the 

scene. This can be seen in the spectrum plot 

for the bands around 600 nm. However, since 

the images are co-registered, saturated pixels 

can be straightforwardly replaced with data 

from the image recorded at the shorter 

integration time. Figure 5 shows the 

reconstructed spectrum based on the 

combined images. As a result the dynamic 

range of the image has also been enhanced, 

yielding a total dynamic in the image of 

approximately 4x10
5
 or 112dB which is 

equivalent to having a 19-bit image. 

 

The vertical streaks in Figure 4 are due to a 

combination of stray light and CCD smear. 

These effects are small relative to the total 

dynamic range of the combined image, but 

clearly visible in the data from the long 

exposure time. An interesting aspect of the 

high dynamic range is that it allows these 

sensor nonidealities to be characterized 

accurately, with the potential to compensate 

for most of the image degradation in a post-

processing step. 

(a) 

(b) 



 
Figure 4. Strong illumination saturates the 

sensor in the spectral bands around 600 nm 

as the FOV approaches the source. The 

vertical stripes are due to stray light and 

CCD smear.  

 

      
Figure 5. Spectrum of a saturated pixel after 

correction. The dynamic range of the image 

is also enhanced after correction. 

 

3.3 Low light fluorescence measurements 

 

The camera was also used to record 

hyperspectral images of fluorescent signals 

from organic tissue samples. For these 

measurements a diffused tripled Nd:YAG 

laser (355 nm, 7 mW/cm
2
) was used to excite 

natural fluorophores in the surface of ham 

samples. The samples were placed on a 

translation stage and scanned through the 

camera field of view. The object distance was 

30 cm.  Different integration times ranging 

from 10 to 80 ms and EMG = 25 were used 

for these tests.  Figure 6 show an RGB (600, 

578 and 544 nm) image of the ham sample, 

and a plot of the spectra from different sectors 

on the sample. 

 

 
Figure 6. The natural fluorophores in a ham 

sample are excited using UV light. The 

profiles correspond to different fatty tissue 

constituents in the sample. 

 

The capability to perform low light level 

measurements also enhances the applicability 

of this technology in fluorescence-based 

applications. A qualitative comparison of the 

results from the laboratory measurements 

show that power from the UV source can be 

reduced to at least ¼ of the power used for 

similar experiments with a conventional 

HySpex VNIR-1600 camera.  In principle, 

this allows to reduce the integration time and 

UV power further and still get high quality 

images using higher EMG values. These 

benefits are particularly promising for 

fluorescence-based medical diagnostics, 

where minimal exposure to UV light is aimed. 

 

 

4. CONCLUSIONS 
 

We have demonstrated hyperspectral imaging 

in various low light level conditions using an 



EMCCD detector array in a HySpex imaging 

spectrometer. The example results show that 

multi-exposure images can capture scenes 

with wide dynamic range, with potential to 

correct for residual sensor artifacts. A 

fundamental limitation on the applicability of 

the camera is in general imposed by photon 

noise. The photon noise is signal-dependent, 

and it has been shown that sensor-derived 

noise estimates can be useful in analysis of 

hyperspectral images. Generally, low-light 

hyperspectral imaging has many potential 

applications, as illustrated by the examples 

given here. 

 

 

REFERENCES 

 

Denvir, D.J., 2003. Electron Multiplying 

CCDs. Proc. SPIE, Vol. 4877, pp. 55-68.  

 

Norsk Elektro Optikk, 2009. HySpex 

Hyperspectral Cameras – An Overview. 

http://www.neo.no/hyspex/ 

 

Randeberg, L.L., 2006. Hyperspectral 

imaging of  bruised skin. Proc. SPIE, Vol. 

6078, pp. 100-110. 

 

Schubert, E. F., 2006. Light-emitting diodes. 

Cambridge University Press, pp. 278.  

 

Sinclair, M.B., 2006. Hyperspectral confocal 

microscope. Applied Optics, Vol. 45, pp. 

6283-6291. 

 

Skauli, T., 2009. Sensor-informed representation of 

hyperspectral images. To be published in 

Proc. SPIE, Vol. 7334.  

  

 

ACKNOWLEDGEMENTS 

 

This work has been supported by the European 

Community’s Marie Curie Research Training 

Networks Programme under contract MRTN-

CT-2006-035927, Hyperspectral Imaging 

Network (HYPER-I-NET). 

 
 

 


